Big Data
The authors write, is far more powerful than the analytics of the past. Executives can measure and therefore manage more precisely than ever before. They can make better predictions and smarter decisions. They can target more-effective interventions in areas that so far have been dominated by gut and intuition rather than by data and rigor. The differences between big data and analytics are a matter of volume, velocity, and variety: More data now cross the internet every second than were stored in the entire internet 20 years ago. Nearly real-time information makes it possible for a company to be much more agile than its competitors. And that information can come from social networks, images, sensors, the web, or other unstructured sources.
The managerial challenges, however, are very real. Senior decision makers have to learn to ask the right questions and embrace evidence-based decision making. Organizations must hire scientists who can find patterns in very large data sets and translate them into useful business information. IT departments have to work hard to integrate all the relevant internal and external sources of data.
The authors offer two success stories to illustrate how companies are using big data: PASSUR Aerospace enables airlines to match their actual and estimated arrival times. Sears Holdings directly analyzes its incoming store data to make promotions much more precise and faster.
“You can’t manage what you don’t measure.”
There’s much wisdom in that saying, which has been attributed to both W. Edwards Deming and Peter Drucker, and it explains why the recent explosion of digital data is so important. Simply put, because of big data, managers can measure, and hence know, radically more about their businesses, and directly translate that knowledge into improved decision making and performance.
Consider retailing. Booksellers in physical stores could always track which books sold and which did not. If they had a loyalty program, they could tie some of those purchases to individual customers. And that was about it. Once shopping moved online, though, the understanding of customers increased dramatically. Online retailers could track not only what customers bought, but also what else they looked at; how they navigated through the site; how much they were influenced by promotions, reviews, and page layouts; and similarities across individuals and groups. Before long, they developed algorithms to predict what books individual customers would like to read next—algorithms that performed better every time the customer responded to or ignored a recommendation. Traditional retailers simply couldn’t access this kind of information, let alone act on it in a timely manner. It’s no wonder that Amazon has put so many brick-and-mortar bookstores out of business.
The familiarity of the Amazon story almost masks its power. We expect companies that were born digital to accomplish things that business executives could only dream of a generation ago. But in fact the use of big data has the potential to transform traditional businesses as well. It may offer them even greater opportunities for competitive advantage (online businesses have always known that they were competing on how well they understood their data). As we’ll discuss in more detail, the big data of this revolution is far more powerful than the analytics that were used in the past. We can measure and therefore manage more precisely than ever before. We can make better predictions and smarter decisions. We can target more-effective interventions, and can do so in areas that so far have been dominated by gut and intuition rather than by data and rigor.
As the tools and philosophies of big data spread, they will change long-standing ideas about the value of experience, the nature of expertise, and the practice of management. Smart leaders across industries will see using big data for what it is: a management revolution. But as with any other major change in business, the challenges of becoming a big data–enabled organization can be enormous and require hands-on—or in some cases hands-off—leadership. Nevertheless, it’s a transition that executives need to engage with today.
What’s New Here?
Business executives sometimes ask us, “Isn’t ‘big data’ just another way of saying ‘analytics’?” It’s true that they’re related: The big data movement, like analytics before it, seeks to glean intelligence from data and translate that into business advantage. However, there are three key differences:
Volume.
As of 2012, about 2.5 exabytes of data are created each day, and that number is doubling every 40 months or so. More data cross the internet every second than were stored in the entire internet just 20 years ago. This gives companies an opportunity to work with many petabyes of data in a single data set—and not just from the internet. For instance, it is estimated that Walmart collects more than 2.5 petabytes of data every hour from its customer transactions. A petabyte is one quadrillion bytes, or the equivalent of about 20 million filing cabinets’ worth of text. An exabyte is 1,000 times that amount, or one billion gigabytes.
Velocity.
For many applications, the speed of data creation is even more important than the volume. Real-time or nearly real-time information makes it possible for a company to be much more agile than its competitors. For instance, our colleague Alex “Sandy” Pentland and his group at the MIT Media Lab used location data from mobile phones to infer how many people were in Macy’s parking lots on Black Friday—the start of the Christmas shopping season in the United States. This made it possible to estimate the retailer’s sales on that critical day even before Macy’s itself had recorded those sales. Rapid insights like that can provide an obvious competitive advantage to Wall Street analysts and Main Street managers.
Variety.
Big data takes the form of messages, updates, and images posted to social networks; readings from sensors; GPS signals from cell phones, and more. Many of the most important sources of big data are relatively new. The huge amounts of information from social networks, for example, are only as old as the networks themselves; Facebook was launched in 2004, Twitter in 2006. The same holds for smartphones and the other mobile devices that now provide enormous streams of data tied to people, activities, and locations. Because these devices are ubiquitous, it’s easy to forget that the iPhone was unveiled only five years ago, and the iPad in 2010. Thus the structured databases that stored most corporate information until recently are ill suited to storing and processing big data. At the same time, the steadily declining costs of all the elements of computing—storage, memory, processing, bandwidth, and so on—mean that previously expensive data-intensive approaches are quickly becoming economical.
As more and more business activity is digitized, new sources of information and ever-cheaper equipment combine to bring us into a new era: one in which large amounts of digital information exist on virtually any topic of interest to a business. Mobile phones, online shopping, social networks, electronic communication, GPS, and instrumented machinery all produce torrents of data as a by-product of their ordinary operations. Each of us is now a walking data generator. The data available are often unstructured—not organized in a database—and unwieldy, but there’s a huge amount of signal in the noise, simply waiting to be released. Analytics brought rigorous techniques to decision making; big data is at once simpler and more powerful. As Google’s director of research, Peter Norvig, puts it: “We don’t have better algorithms. We just have more data.”
How Data-Driven Companies Perform
The second question skeptics might pose is this: “Where’s the evidence that using big data intelligently will improve business performance?” The business press is rife with anecdotes and case studies that supposedly demonstrate the value of being data-driven. But the truth, we realized recently, is that nobody was tackling that question rigorously. To address this embarrassing gap, we led a team at the MIT Center for Digital Business, working in partnership with McKinsey’s business technology office and with our colleague Lorin Hitt at Wharton and the MIT doctoral student Heekyung Kim. We set out to test the hypothesis that data-driven companies would be better performers. We conducted structured interviews with executives at 330 public North American companies about their organizational and technology management practices, and gathered performance data from their annual reports and independent sources.
Not everyone was embracing data-driven decision making. In fact, we found a broad spectrum of attitudes and approaches in every industry. But across all the analyses we conducted, one relationship stood out: The more companies characterized themselves as data-driven, the better they performed on objective measures of financial and operational results. In particular, companies in the top third of their industry in the use of data-driven decision making were, on average, 5% more productive and 6% more profitable than their competitors. This performance difference remained robust after accounting for the contributions of labor, capital, purchased services, and traditional IT investment. It was statistically significant and economically important and was reflected in measurable increases in stock market valuations.
Expertise from Surprising Sources
So how are managers using big data? Let’s look in detail at two companies that are far from Silicon Valley upstarts. One uses big data to create new businesses, the other to drive more sales.
Improved Airline ETAs
Minutes matter in airports. So does accurate information about flight arrival times: If a plane lands before the ground staff is ready for it, the passengers and crew are effectively trapped, and if it shows up later than expected, the staff sits idle, driving up costs. So when a major U.S. airline learned from an internal study that about 10% of the flights into its major hub had at least a 10-minute gap between the estimated time of arrival and the actual arrival time—and 30% had a gap of at least five minutes—it decided to take action.
At the time, the airline was relying on the aviation industry’s long-standing practice of using the ETAs provided by pilots. The pilots made these estimates during their final approach to the airport, when they had many other demands on their time and attention. In search of a better solution, the airline turned to PASSUR Aerospace, a provider of decision-support technologies for the aviation industry. In 2001 PASSUR began offering its own arrival estimates as a service called RightETA. It calculated these times by combining publicly available data about weather, flight schedules, and other factors with proprietary data the company itself collected, including feeds from a network of passive radar stations it had installed near airports to gather data about every plane in the local sky.
PASSUR started with just a few of these installations, but by 2012 it had more than 155. Every 4.6 seconds it collects a wide range of information about every plane that it “sees.” This yields a huge and constant flood of digital data. What’s more, the company keeps all the data it has gathered over time, so it has an immense body of multidimensional information spanning more than a decade. This allows sophisticated analysis and pattern matching. RightETA essentially works by asking itself “What happened all the previous times a plane approached this airport under these conditions? When did it actually land?”
After switching to RightETA, the airline virtually eliminated gaps between estimated and actual arrival times. PASSUR believes that enabling an airline to know when its planes are going to land and plan accordingly is worth several million dollars a year at each airport. It’s a simple formula: Using big data leads to better predictions, and better predictions yield better decisions.
Speedier, More Personalized Promotions
A couple of years ago, Sears Holdings came to the conclusion that it needed to generate greater value from the huge amounts of customer, product, and promotion data it collected from its Sears, Craftsman, and Lands’ End brands. Obviously, it would be valuable to combine and make use of all these data to tailor promotions and other offerings to customers, and to personalize the offers to take advantage of local conditions. Valuable, but difficult: Sears required about eight weeks to generate personalized promotions, at which point many of them were no longer optimal for the company. It took so long mainly because the data required for these large-scale analyses were both voluminous and highly fragmented—housed in many databases and “data warehouses” maintained by the various brands.
In search of a faster, cheaper way to do its analytic work, Sears Holdings turned to the technologies and practices of big data. As one of its first steps, it set up a Hadoop cluster. This is simply a group of inexpensive commodity servers whose activities are coordinated by an emerging software framework called Hadoop (named after a toy elephant in the household of Doug Cutting, one of its developers).
Sears started using the cluster to store incoming data from all its brands and to hold data from existing data warehouses. It then conducted analyses on the cluster directly, avoiding the time-consuming complexities of pulling data from various sources and combining them so that they can be analyzed. This change allowed the company to be much faster and more precise with its promotions. According to the company’s CTO, Phil Shelley, the time needed to generate a comprehensive set of promotions dropped from eight weeks to one, and is still dropping. And these promotions are of higher quality, because they’re more timely, more granular, and more personalized. Sears’s Hadoop cluster stores and processes several petabytes of data at a fraction of the cost of a comparable standard data warehouse.
Shelley says he’s surprised at how easy it has been to transition from old to new approaches to data management and high-performance analytics. Because skills and knowledge related to new data technologies were so rare in 2010, when Sears started the transition, it contracted some of the work to a company called Cloudera. But over time its old guard of IT and analytics professionals have become comfortable with the new tools and approaches.
The PASSUR and Sears Holding examples illustrate the power of big data, which allows more-accurate predictions, better decisions, and precise interventions, and can enable these things at seemingly limitless scale. We’ve seen big data used in supply chain management to understand why a carmaker’s defect rates in the field suddenly increased, in customer service to continually scan and intervene in the health care practices of millions of people, in planning and forecasting to better anticipate online sales on the basis of a data set of product characteristics, and so on. We’ve seen similar payoffs in many other industries and functions, from finance to marketing to hotels and gaming, and from human resource management to machine repair.
Our statistical analysis tells us that what we’re seeing is not just a few flashy examples but a more fundamental transformation of the economy. We’ve become convinced that almost no sphere of business activity will remain untouched by this movement.
A New Culture of Decision Making
The technical challenges of using big data are very real. But the managerial challenges are even greater—starting with the role of the senior executive team.
Muting the HiPPOs.
One of the most critical aspects of big data is its impact on how decisions are made and who gets to make them. When data are scarce, expensive to obtain, or not available in digital form, it makes sense to let well-placed people make decisions, which they do on the basis of experience they’ve built up and patterns and relationships they’ve observed and internalized. “Intuition” is the label given to this style of inference and decision making. People state their opinions about what the future holds—what’s going to happen, how well something will work, and so on—and then plan accordingly. (See “The True Measures of Success,” by Michael J. Mauboussin, in this issue.)
Big data’s power does not erase the need for vision or human insight.
For particularly important decisions, these people are typically high up in the organization, or they’re expensive outsiders brought in because of their expertise and track records. Many in the big data community maintain that companies often make most of their important decisions by relying on “HiPPO”—the highest-paid person’s opinion.
To be sure, a number of senior executives are genuinely data-driven and willing to override their own intuition when the data don’t agree with it. But we believe that throughout the business world today, people rely too much on experience and intuition and not enough on data. For our research we constructed a 5-point composite scale that captured the overall extent to which a company was data-driven. Fully 32% of our respondents rated their companies at or below 3 on this scale.
New roles.
Executives interested in leading a big data transition can start with two simple techniques. First, they can get in the habit of asking “What do the data say?” when faced with an important decision and following up with more-specific questions such as “Where did the data come from?,” “What kinds of analyses were conducted?,” and “How confident are we in the results?” (People will get the message quickly if executives develop this discipline.) Second, they can allow themselves to be overruled by the data; few things are more powerful for changing a decision-making culture than seeing a senior executive concede when data have disproved a hunch.
When it comes to knowing which problems to tackle, of course, domain expertise remains critical. Traditional domain experts—those deeply familiar with an area—are the ones who know where the biggest opportunities and challenges lie. PASSUR, for one, is trying to hire as many people as possible who have extensive knowledge of operations at America’s major airports. They will be invaluable in helping the company figure out what offerings and markets it should go after next.
As the big data movement advances, the role of domain experts will shift. They’ll be valued not for their HiPPO-style answers but because they know what questions to ask. Pablo Picasso might have been thinking of domain experts when he said, “Computers are useless. They can only give you answers.”
Getting Started
Five Management Challenges
Companies won’t reap the full benefits of a transition to using big data unless they’re able to manage change effectively. Five areas are particularly important in that process.
Leadership.
Companies succeed in the big data era not simply because they have more or better data, but because they have leadership teams that set clear goals, define what success looks like, and ask the right questions. Big data’s power does not erase the need for vision or human insight. On the contrary, we still must have business leaders who can spot a great opportunity, understand how a market is developing, think creatively and propose truly novel offerings, articulate a compelling vision, persuade people to embrace it and work hard to realize it, and deal effectively with customers, employees, stockholders, and other stakeholders. The successful companies of the next decade will be the ones whose leaders can do all that while changing the way their organizations make many decisions.
Talent management.
As data become cheaper, the complements to data become more valuable. Some of the most crucial of these are data scientists and other professionals skilled at working with large quantities of information. Statistics are important, but many of the key techniques for using big data are rarely taught in traditional statistics courses. Perhaps even more important are skills in cleaning and organizing large data sets; the new kinds of data rarely come in structured formats. Visualization tools and techniques are also increasing in value. Along with the data scientists, a new generation of computer scientists are bringing to bear techniques for working with very large data sets. Expertise in the design of experiments can help cross the gap between correlation and causation. The best data scientists are also comfortable speaking the language of business and helping leaders reformulate their challenges in ways that big data can tackle. Not surprisingly, people with these skills are hard to find and in great demand. (See “Data Scientist: The Sexiest Job of the 21st Century,” by Thomas H. Davenport and D.J. Patil, in this issue.)
Technology.
The tools available to handle the volume, velocity, and variety of big data have improved greatly in recent years. In general, these technologies are not prohibitively expensive, and much of the software is open source. Hadoop, the most commonly used framework, combines commodity hardware with open-source software. It takes incoming streams of data and distributes them onto cheap disks; it also provides tools for analyzing the data. However, these technologies do require a skill set that is new to most IT departments, which will need to work hard to integrate all the relevant internal and external sources of data. Although attention to technology isn’t sufficient, it is always a necessary component of a big data strategy.
Decision making.
An effective organization puts information and the relevant decision rights in the same location. In the big data era, information is created and transferred, and expertise is often not where it used to be. The artful leader will create an organization flexible enough to minimize the “not invented here” syndrome and maximize cross-functional cooperation. People who understand the problems need to be brought together with the right data, but also with the people who have problem-solving techniques that can effectively exploit them.
Company culture.
The first question a data-driven organization asks itself is not “What do we think?” but “What do we know?” This requires a move away from acting solely on hunches and instinct. It also requires breaking a bad habit we’ve noticed in many organizations: pretending to be more data-driven than they actually are. Too often, we saw executives who spiced up their reports with lots of data that supported decisions they had already made using the traditional HiPPO approach. Only afterward were underlings dispatched to find the numbers that would justify the decision.Without question, many barriers to success remain. There are too few data scientists to go around. The technologies are new and in some cases exotic. It’s too easy to mistake correlation for causation and to find misleading patterns in the data. The cultural challenges are enormous, and, of course, privacy concerns are only going to become more significant. But the underlying trends, both in the technology and in the business payoff, are unmistakable.
The evidence is clear: Data-driven decisions tend to be better decisions. Leaders will either embrace this fact or be replaced by others who do. In sector after sector, companies that figure out how to combine domain expertise with data science will pull away from their rivals. We can’t say that all the winners will be harnessing big data to transform decision making. But the data tell us that’s the surest bet.
Pingback: buy propecia online from canada
Pingback: Leandro Farland
Pingback: Arie Baisch
Pingback: Madelyn Monroe MILF Porn
Pingback: best-domains
Pingback: Essay writer
Pingback: Do My Assignment For Me
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: fundamentals of robotics
Pingback: robotics case study
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: grand rapids same day crowns
Pingback: Click Here
Pingback: grand rapids teeth whitening
Pingback: https://gquery.org/
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: invite and earn
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: Click Here
Pingback: 카지노 게임 온라인
Pingback: 라이브 딜러 카지노
Pingback: 카지노 리뷰 및 평가
Pingback: best-domains
Pingback: premium-domains-list
Pingback: yoga pants
Pingback: Google reviews
Pingback: reputation defenders
Pingback: 2023 Books
Pingback: obituary
Pingback: memorial
Pingback: search dececased
Pingback: rip
Pingback: how to bet on football for beginners
Pingback: Chirurgie esthétique Tunisie
Pingback: Chirurgie esthétique Tunisie
Pingback: National Chi Nan University
Pingback: Faculty of Computers & Information Technology future university in egypt
Pingback: Research opportunities
Pingback: Finance courses
Pingback: الممارسات الأخلاقية
Pingback: fue
Pingback: and international arenas
Pingback: الصيادلة
Pingback: Large Lecture Halls
Pingback: ماجيستير علاج الجذور
Pingback: أفضل كلية هندسة فى مصر
Pingback: Software Engineering
Pingback: computer science courses
Pingback: Professional Development
Pingback: QS World University Rankings
Pingback: برامج الإقامة الخاصة بتقويم الأسنان
Pingback: Online MBA program in Egypt
Pingback: الفاعلية التعليمية
Pingback: Admission requirements for future university
Pingback: Admission requirements for future university
Pingback: Academic Year
Pingback: Seattle University
Pingback: كم عدد سنوات كلية الصيدلة
Pingback: وظائف خريجي ماجستير إدارة الأعمال في مصر
Pingback: طب الاسنان المعاصر
Pingback: best university in egypt
Pingback: Pharmacognos
Pingback: https://www.kooky.domains/post/key-features-of-web3-domains
Pingback: https://www.kooky.domains/post/greater-autonomy-and-control-with-web3-domains
Pingback: دراسة ادارة الاعمال بجامعة المستقبل
Pingback: Future University Egypt business programs
Pingback: Research projects
Pingback: political mass media
Pingback: Awareness Campaigns for pharmacy students at future university
Pingback: Pharmacy Practice and Clinical Pharmacy
Pingback: Dental specialties
Pingback: Summer Courses
Pingback: Electrical Engineering
Pingback: نظام الامتحانات
Pingback: Computer Science Programs
Pingback: Changing World
Pingback: developing the educational process
Pingback: top university in egypt
Pingback: Periodontal Continuing Education
Pingback: ماجستير طب الأسنان
Pingback: Transfer students admissions to future university
Pingback: Maillot de football
Pingback: Maillot de football
Pingback: Maillot de football
Pingback: Maillot de football
Pingback: Maillot de football
Pingback: Maillot de football
Pingback: Maillot de football
Pingback: Maillot de football
Pingback: Maillot de football
Pingback: Maillot de football
Pingback: Maillot de football
Pingback: Maillot de football
Pingback: Maillot de football
Pingback: SEOSolutionVIP Fiverr
Pingback: SEOSolutionVIP Fiverr
Pingback: SEOSolutionVIP Fiverr
Pingback: striscia led corridoio
Pingback: led luci camera
Pingback: illuminazione a binario
Pingback: striscia led letto
Pingback: gymnase extérieur
Pingback: mur ninja warrior
Pingback: parcours d obstacle militaire
Pingback: Fiverr Earn
Pingback: Fiverr Earn
Pingback: Fiverr Earn
Pingback: Fiverr Earn
Pingback: Fiverr Earn
Pingback: Fiverr Earn
Pingback: Fiverr Earn
Pingback: Fiverr Earn
Pingback: Fiverr Earn
Pingback: Visualizza la striscia led soffitto
Pingback: Hooled controsoffitto led
Pingback: fiverrearn.com
Pingback: fiverrearn.com
Pingback: fiverrearn.com
Pingback: fiverrearn.com
Pingback: fiverrearn.com
Pingback: fiverrearn.com
Pingback: Advance-Esthetic LLC
Pingback: fiverrearn.com
Pingback: red boost mediprime
Pingback: TMS System
Pingback: blue frenchie houston
Pingback: clothing manufacturer
Pingback: clothes manufacturer
Pingback: clima para mañana
Pingback: weather
Pingback: fiverrearn.com
Pingback: french bulldog
Pingback: fiverrearn.com
Pingback: blue merle frenchies for sale
Pingback: what can frenchies not eat
Pingback: french bulldog puppies texas
Pingback: bernedoodle
Pingback: exotic bullies
Pingback: mini french bulldog
Pingback: isla mujeres golf cart
Pingback: jute rugs
Pingback: seo in Qatar
Pingback: Piano Disposal and Recycling
Pingback: Long-term Piano Storage
Pingback: Piano Storage Solutions
Pingback: Best university in Egypt
Pingback: Private universities in Egypt
Pingback: Top university in Egypt
Pingback: Best university in Egypt
Pingback: Best university in Egypt
Pingback: Top university in Egypt
Pingback: Private universities in Egypt
Pingback: Best university in Egypt
Pingback: golf cart isla mujeres
Pingback: isla paddle board
Pingback: isla mujeres golf cart rental
Pingback: french bulldog adoption
Pingback: french bulldog vs pug
Pingback: crypto news
Pingback: vietravel tour
Pingback: sorority jewelry
Pingback: teacup frenchies for sale
Pingback: Google Rezensionen löschen lassen
Pingback: clima fresno ca
Pingback: mini frenchie for sale
Pingback: iPhone repair Orange County
Pingback: french bulldogs for sale tx
Pingback: Personalised jewellery for him
Pingback: best Samsung
Pingback: best deals
Pingback: future university
Pingback: future university
Pingback: future university
Pingback: future university
Pingback: future university
Pingback: future university
Pingback: french bulldog houston texas
Pingback: bandeau set
Pingback: multisbo
Pingback: seo services vancouver
Pingback: bulldogs puppy
Pingback: Fiverr
Pingback: Fiverr
Pingback: Fiverr
Pingback: Fiverr
Pingback: french bulldog for sale dallas
Pingback: french bulldog in austin
Pingback: merle french bulldog
Pingback: future university
Pingback: renting golf cart isla mujeres
Pingback: bulldog frenchie puppies
Pingback: Lean
Pingback: Warranty
Pingback: FUE
Pingback: FUE
Pingback: FUE
Pingback: FUE
Pingback: FUE
Pingback: Furniture protection
Pingback: Interstate moving
Pingback: Furniture transport
Pingback: pcfinancial ca activate
Pingback: citi.com/activate
Pingback: برنامج MBA بمصر
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: Fiverr.Com
Pingback: Fiverr
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: Free Local Classified Ads
Pingback: Free Local Classified Ads
Pingback: FiverrEarn
Pingback: Training Philippines
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: Pornography Australia
Pingback: pupuk anorganik dan pupuk organik
Pingback: pupuk cair terbaik adalah di pupukanorganik.com
Pingback: pupuk organik terbaik
Pingback: partners
Pingback: skin care products
Pingback: revive daily
Pingback: prostadine
Pingback: java burn
Pingback: skincare supplement
Pingback: illuderma
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: live sex cams
Pingback: live sex cams
Pingback: live sex cams
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: french bulldog austin
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: ფილმები ქართულად
Pingback: Best Lightroom Presets
Pingback: seo company texas
Pingback: seo company vancouver
Pingback: anniversary
Pingback: shopping cart
Pingback: Best University in Yemen
Pingback: Situs Slot Online
Pingback: Scientific Research
Pingback: Kampus Islam Terbaik
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: FiverrEarn
Pingback: Generator Repair near me Sheffield
Pingback: slimcrystal legit
Pingback: cheap sex cams
Pingback: french bulldog buy
Pingback: live sex cams
Pingback: freeze dried candy
Pingback: rare breed-trigger
Pingback: Litigio fiscal
Pingback: Alienlabs Zkittlez
Pingback: laundry service in bangalore
Pingback: 늑대닷컴
Pingback: Bandar judi online
Pingback: One Peace AMV
Pingback: nangs near me
Pingback: superslot
Pingback: freelance web designer
Pingback: allgame
Pingback: 918kiss
Pingback: หวย24
Pingback: Skincare for healthy skin
Pingback: bulldog in clothes
Pingback: pg slot
Pingback: regles 421
Pingback: cybersécurité
Pingback: Raahe Guide
Pingback: aplikasi slot online free spin
Pingback: upstate hotels
Pingback: resort lake placid
Pingback: megagame
Pingback: electronic visa
Pingback: 300 win mag ammo
Pingback: duromine
Pingback: 6.5 grendel ammo
Pingback: 220 swift
Pingback: sicarios en españa
Pingback: itsMasum.Com
Pingback: itsMasum.Com
Pingback: itsMasum.Com
Pingback: itsMasum.Com
Pingback: itsMasum.Com
Pingback: la bonne formation pôle emploi
Pingback: soc cybersécurité
Pingback: nang tanks
Pingback: Nangs delivery
Pingback: nangs sydney
Pingback: read more
Pingback: itsmasum.com
Pingback: itsmasum.com
Pingback: itsmasum.com
Pingback: emeraldchat
Pingback: teen chat
Pingback: strangerchat
Pingback: talkwithstrangee
Pingback: itsmasum.com
Pingback: Film institutionnel Nantes
Pingback: nairobi jobs
Pingback: karachi jobs
Pingback: ny jobs career
Pingback: vienna jobs
Pingback: live sex
Pingback: cheap sex webcams
Pingback: my free cams
Pingback: amateur webcams
Pingback: Kampus Ternama
Pingback: french bulldog texas
Pingback: Queen Arwa University World University Rankings THE
Pingback: Queen Arwa University Journal
Pingback: Queen Arwa University ROR ID: 03ygqq617
Pingback: 918kiss
Pingback: pg slot
Pingback: 918kiss